CURE-ing General Chemistry II Laboratory with Biochar Adsorption Samantha J. Doble, Grace Wilson, and Jacob W. Wainman Chemistry and Biochemistry Department, University of Minnesota Duluth DULUTH

Introduction

Course-Based Undergraduate Research Experience (CURE) core components

Components	Traditional	Inquiry Based	Discovery Based
Results are unknown to students, instructor, and science community			
Uses science practices			
Iteration			
Collaboration			
Broadly Relevant			

Biochar

- Pyrolysis of biomass \circ Low O₂ environment
- Properties and sizes widely vary
- Interest in using biochar to adsorb pollutants in water

• Collaboration with the biochar division of the Natural Resources Research Institute (NRRI)

Introduction Adsorption Experiment

- Prior knowledge: absorbance spectroscopy & dilutions
- General Chemistry II Concepts: Thermodynamics & Kinetics

- Biochar • Each group of 3 or 4 is assigned a [MB]
- As a lab section, they complete all the runs
- 10 ml MR colution with 25 mg biochar for apph run time

• TO ME IVID SOLUTION WITH 35 Mg DIOCHAR TOR EACH RUN TIME			
MB Concentration (mg/L)	Time (min)	Temperature (°C)	
4	2	0 - 5	
6	5	19 - 25	
8	15	38 - 41	
	30		
	60		
	120		

- This lab is designed to introduce the variability of biochar and its adsorption capacity
- Also shows students there are a variety of parameters that affect adsorption

Biochar Adsorption CURE

- 15 metal cation options
- Students create open-ended questions exploring the adsorption capacity of metals on biochar
- Exploring adsorption parameters examples:

Atomic size

Week	CURE Progression		
1	Syllabus		
2	Local biochar introduction talk, Literature search		
3	CREATE Activity, Introduction to prompt		
4	Introduction to research questions EDTA titration lab for determining [Ca ²⁺]		
5	Introduction to experimental proposals Submit individual research questions MB adsorption on biochar lab week 1		
6	Pick their group's research question MB adsorption on biochar lab week 2		
7	Individual experimental proposal MB adsorption on biochar lab week 3		
8	Group experimental proposal		
9	Spring break, Gather CURE materials		
10 - 15	CURE experiments		
16	Finalize posters from rough draft feedback		
17	Poster presentation final		

Dolan, E. L.; Weaver, G. C. Guide to Course-Based Undergraduate Research; Macmillan Learning: New York, 2021.

Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of Methylene Blue from Aqueous Solution by Sewage Sludge-Derived Biochar: Adsorption Kinetics, Equilibrium, Thermodynamics and Mechanism. J. Environ. Chem. Eng. 2017, 5 (1), 601–611. https://doi.org/10.1016/j.jece.2016.12.019

Biochar

MB absorbance decreases over time as it adsorbs to biochar

• Student prompt: Interested in metal removal by biochar 3 commercial & 2 local biochar samples

Biochar size

Key References